A Method of Construction of Triangular PBIB Designs

K.K. Singh Meitei

Manipur University, Canchipur-795003 (Received : February, 1992)

SUMMARY

A new series of 2-associate triangular PBIBD is being presented in this paper.

Key words : T_m- association scheme; PBIBD; BIBD.

1. Introduction

John [1] extended the triangular association scheme to three associate classes. Later on Saha [2] had introduced triangular association scheme, representing each treatment by an m-set and giving the name "m-associate triangular (T_m -) association scheme". Many of PBIBD's based on such association scheme are known. Sinha [3], [4], [5], and [6] had also constructed several series of such designs.

The 2-associate triangular association scheme is defined as below.

Definition 1. Let there be $\binom{n}{2}$ treatments represented by all the possible sets $[\theta_1, \theta_2]$, assuming that $[\theta_1, \theta_2]$ and $[\theta_2, \theta_1]$ represent the same treatment, where the θ 's are integers satisfying $0 < \theta_1, \theta_2 \le n$. If two treatments have an integer in common they are first associate, otherwise second associate.

The parameters of the association scheme are :

$$\mathbf{v} = \begin{pmatrix} \mathbf{n} \\ 2 \end{pmatrix}$$
 $\mathbf{n}_1 = 2(\mathbf{n} - 2), \ \mathbf{p}_{11}^1 = \mathbf{n} - 2, \ \mathbf{p}_{11}^2 = 4$

Notation 1. For a given set S, by ISI means the cardinality of S.

2. The Construction

Given a set, $X = \{1, 2, ..., n\}$ consider a partition of X into three disjoint sets, S_1 , S_2 , S_3 , $||S_i|| = s_i$; i = 1, 2, 3 and $s_1 \neq s_2$. A block based on S_1 S_2 , S_3 is constructed so that its contents are all possible 2-set : one element coming

from S_1 and another from S_2 and all possible 2-sets : both elements coming from S_3 . Representing all possible 2-sets of X, the treatments of a design and constructing the blocks for all possible partitions of X, a series of design given in the below theorem is obtained.

Theorem 1. A series of two-associate class triangular PBIBD's with the following parameters always exists.

$$\mathbf{v} = \begin{pmatrix} \mathbf{n} \\ 2 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} \mathbf{n} \\ \mathbf{s}_1 \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix}, \quad \mathbf{k} = \mathbf{s}_1 \mathbf{s}_2 + \alpha \begin{pmatrix} \mathbf{s}_3 \\ 2 \end{pmatrix}$$

$$\mathbf{r} = 2 \begin{pmatrix} \mathbf{n} - 2 \\ \mathbf{s}_1 - 1 \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s}_1 - 1 \\ \mathbf{s}_2 - 1 \end{pmatrix} + \alpha \begin{pmatrix} \mathbf{n} - 2 \\ \mathbf{s}_1 \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s}_1 - 2 \\ \mathbf{s}_2 \end{pmatrix}$$

$$\lambda_1 = \delta_1 \begin{pmatrix} \mathbf{n} - 3 \\ \mathbf{s}_1 - 1 \end{pmatrix}, \quad \begin{pmatrix} \mathbf{n} - \mathbf{s}_1 - 2 \\ \mathbf{s}_2 - 2 \end{pmatrix} + \delta_2 \begin{pmatrix} \mathbf{n} - 3 \\ \mathbf{s}_1 - 2 \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s}_2 - 1 \\ \mathbf{s}_2 - 1 \end{pmatrix}$$

$$+ \delta_3 \begin{pmatrix} \mathbf{n} - 3 \\ \mathbf{s}_1 \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s}_1 - 3 \\ \mathbf{s}_2 \end{pmatrix}$$

$$\lambda_2 = 4 \delta_4 \begin{pmatrix} \mathbf{n} - 4 \\ \mathbf{s}_1 - 2 \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s}_1 - 2 \\ \mathbf{s}_2 - 2 \end{pmatrix} + \delta_5 \begin{pmatrix} \mathbf{n} - 4 \\ \mathbf{s}_1 \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s}_1 - 4 \\ \mathbf{s}_2 \end{pmatrix}$$

$$+ 4 \alpha \begin{pmatrix} \mathbf{n} - 4 \\ \mathbf{s}_1 - 1 \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s}_1 - 3 \\ \mathbf{s}_2 - 1 \end{pmatrix}$$

where

 $\begin{array}{ll} \alpha = 0, \mbox{ if } s_3 < 2 \ , \ \delta_1 = 0, \mbox{ if } s_2 < 2; & \delta_2 = 0, \mbox{ if } s_1 < 2; \\ = 1, \mbox{ otherwise,} & = 1 \mbox{ otherwise,} & = 1, \mbox{ otherwise,} \\ \delta_3 = 0, \mbox{ if } s_3 < 3; \ \delta_4 = 0, \mbox{ if one of } s_1 & \delta_5 = 0, \mbox{ if } s_3 < 4; \\ = 1, \mbox{ otherwise,} & \mbox{ and } s_2 < 2; & = 1, \mbox{ otherwise} \end{array}$

= 1, otherwise

Proof: It can be easily seen that v is equal to $\binom{n}{2}$. For the construction of block, there are $\binom{n}{s_1}\binom{n-s_1}{s_2}$ distinct partitions of X, which gives the number of blocks. The block size is equal to the sum of the number of 2-sets : one element coming from S₁ and another from S₂ and number of 2-sets : both elements coming from S₃. That is s₁ s₂₊ $\binom{s_3}{2}$.

A treatment $\{\theta_1, \theta_2\}$ occurs in a block, if the partition of X makes that (i) θ_1 (θ_2) and θ_2 (θ_1) belong to S₂ or (ii) θ_1 and θ_2 belong to S₃. The number of such partitions is

$$2 \binom{n-2}{s_1-1} \binom{n-s_1-1}{s_2-1} \binom{n-s_1-s_2}{s_3} + \binom{n-2}{s_1} \binom{n-s_1-2}{s_2} \binom{n-s_1-s_2-2}{s_3-2}$$

which is the replication number of the design.

Any two first associates, $\{\theta_1, \theta_2\}$ and $\{\theta_1, \theta_3\}$ appear together in a block when its partition of X is such that (i) θ_1 (both θ_2 and θ_3) belong to S_1 and both θ_2 and θ_3 (θ_1) belong to S_2 or (ii) θ_1 , θ_2 , θ_3 belong to S_3 .

Any two second associates, $\{\theta_1, \theta_2\}$ and $\{\psi_1, \psi_2\}$ occur together in a block if X is partitioned such that

(i) (θ_1, ψ_1) , (θ_2, ψ_2) belong to S₁, S₂ respectively, or

(ii) (θ_1, ψ_2) , (θ_2, ψ_1) belong to S₁, S₂ respectively, or

(iii) (θ_2, ψ_1) , (θ_1, ψ_2) belong to S_1 , S_2 respectively, or

(iv) (θ_2, ψ_2) , (θ_1, ψ_1) belong to S_1 , S_2 respectively, or

(v) $\theta_1, \theta_2, \psi_1, \psi_2$ belong to S₃, or

- (vi) $\theta_1(\theta_2), \theta_2(\theta_1)$, both ψ_1 and ψ_2 belong to S_1, S_2, S_3 respectively, or
- (vii) $\psi_1(\psi_2)$, $\psi_2(\psi_1)$, both θ_1 and θ_2 belong to S_1 , S_2 , S_3 respectively.

Counting straight forward the partitions of X, the value of λ_1 and λ_2 are obtained.

Under the condition $s_1=s_2=s$ (say), each block in the above construction gets repeated twice. Keeping only one copy of each block, we get :

Corollary 1. A series of two-associate class triangular PBIBD with the following parameters always exists.

$$\mathbf{v} = \begin{pmatrix} \mathbf{n} \\ \mathbf{2} \end{pmatrix} \mathbf{b} = \frac{1}{2} \begin{pmatrix} \mathbf{n} \\ \mathbf{s} \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s} \\ \mathbf{s} \end{pmatrix}, \quad \mathbf{k} = \mathbf{s}^2 + \alpha \begin{pmatrix} \mathbf{n} - 2\mathbf{s} \\ \mathbf{2} \end{pmatrix}$$
$$\mathbf{r} = \begin{pmatrix} \mathbf{n} - 2 \\ \mathbf{s} - 1 \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s} - 1 \\ \mathbf{s} - 1 \end{pmatrix} + \frac{1}{2} \alpha \begin{pmatrix} \mathbf{n} - 2 \\ \mathbf{s} \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s} - 2 \\ \mathbf{s} \end{pmatrix}$$
$$\lambda_1 = \delta_1 \begin{pmatrix} \mathbf{n} - 3 \\ \mathbf{s} - 1 \end{pmatrix} + \frac{1}{2} \delta_2 \begin{pmatrix} \mathbf{n} - 3 \\ \mathbf{s} \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{s} - 3 \\ \mathbf{s} \end{pmatrix}$$

$$\lambda_{2} = 2 \delta_{1}^{+} \begin{pmatrix} n-4 \\ s-2 \end{pmatrix} \begin{pmatrix} n-s-2 \\ s-2 \end{pmatrix} + \frac{1}{2} \delta_{3} \begin{pmatrix} n-4 \\ s \end{pmatrix} \begin{pmatrix} n-s-4 \\ s \end{pmatrix} + 2\alpha \begin{pmatrix} n-4 \\ s-1 \end{pmatrix} \begin{pmatrix} n-s-3 \\ s-1 \end{pmatrix}$$

where

$$\begin{split} \delta_1 &= 0, &\text{if } s < 2; \\ &= 1, &\text{otherwise}, \\ \delta_3 &= 0, &\text{if } n < 2 (s+2); \\ &= 1, &\text{otherwise}, \\ &= 1, &\text{otherwise}, \\ &= 1, &\text{otherwise}, \\ \end{split}$$

Two series of 2-associate triangular PBIBD are given as example of Theorem 1 and Corollary 1 respectively.

Example 1. Letting $s_1 = 2$, $s_2 = 1$, $s_3 = 2$, the parameters of the design are v = 10, b = 30, k = 3, r = 9, $\lambda_1 = 1$, $\lambda_2 = 4$.

Example 2. For s = 2, n = 6, we get a series of 2-associate triangular PBIBD with the parameters v = 15, b = 45, k = 5, r = 15, $\lambda_1 = 3$, $\lambda_2 = 6$.

Remark 1. The possible different relations on n and s, under which PBIBD given in Corollary 1, becomes a BIBD are as follows :

If (i) $s \ge 2$, $n \ge 2 (s + 2)$, when $(n-3) (s-1)! q! = (n-s-2)! [2s (s-1)^2 + q (q - 1) (4s - n + 2)]$ (ii) $s \ge 2$, n < 2 (s + 2), when (n-3) (s-2)! q! = 2 (n - s - 2)! (s - 1)

(iii)
$$s \ge 2$$
, $n = 2 (s + 2)$,
when $(n - 3) (s - 1)! q! = 2 (n - s - 2) - [(s - 1)^2 + q (q - 1)]$
(iv) $s = 1$, $n \ge 2 (s + 2)$, the BIBD is with parameters $v = 15 = b$,
 $k = 7 = r$, $\lambda = 3$

(v)
$$s \ge 2$$
, $n = 2s + 3$,
when $2s (n-3) s! q! = (n-s-2)! [4s^2 \{ (s-1)^2 + q (q-1) \} - (n-3) q (q-1) (q-2)]$

where q = n - 2s

ACKNOWLEDGEMENT

The author is thankful to the referee for his helpful comments.

REFERENCES

- [1] John, P.W.M., 1966. An extension of the triangular association scheme to three associate classes. J. Roy. Statist. Soc. B, 28, 361-365.
- Saha, G.M., 1973. On construction of T_m-type PBIB designs. Ann. Inst. Stat. Math., 25, 605-616.
- [3] Sinha, K., 1977. On the construction of PBIB design I. J. Statist. Plan. and Inf., 1, 103-107.
- [4] Sinha, K., 1981. On the construction of PBIB designs II. Math. Oper. Statist., 12(4), 503-508.
- [5] Sinha, K., 1983. A BIBD arising from a construction for PBIBD. ARS Combinatoria, 18, 217-219.
- [6] Sinha, K. and Sinha, M.K., 1991. A series of BIB designs. ARS Combinatoria, 32.