A Method of Construction of Triangular PBIB Designs

K,K. Singh Meitei.
Manipur University, Canchipur-795003
(Received : February, 1992)

SUMMARY

A new series of 2-associate triangular PBIBD is being presented in this paper.

Key words : T_{m} - association scheme; PBIBD; BIBD.

1. Introduction

John [1] extended the triangular association scheme to three associate classes. Later on Saha [2] had introduced triangular association scheme, representing each treatment by an m -set and giving the name " m -associate triangular (T_{m}-) association scheme". Many of PBIBD's based on such association scheme are known. Sinha [3], [4], [5], and [6] had also constructed several series of such designs.

The 2-associate triangular association scheme is defined as below.
Definition 1. Let there be $\binom{\mathrm{n}}{2}$ treatments represented by. all the possible sets $\left[\theta_{1}, \theta_{2}\right]$, assuming that $\left[\theta_{1}, \theta_{2}\right]$ and $\left[\theta_{2}, \theta_{1}\right]$ represent the same treatment, where the θ 's are integers satisfying $0<\theta_{1}, \theta_{2} \leq n$. If two treatments have an integer in common they are first associate, otherwise second associate.

The parameters of the association scheme are :

$$
\mathrm{v}=\binom{\mathrm{n}}{2}, \mathrm{n}_{1}=2(\mathrm{n}-2), \mathrm{p}_{11}^{1}=\mathrm{n}-2, \mathrm{p}_{11}^{2}=4
$$

Notation 1. For a given set S, by $\|S\|$ means the cardinality of S.

2. The Construction

Given a set, $\mathrm{X}=\{1,2, \ldots, \mathrm{n}\}$ consider a partition of X into three disjoint sets, $S_{1}, S_{2}, S_{3},\left\|S_{i}\right\|=s_{i} ; i=1,2,3$ and $s_{1} \neq s_{2}$. A block based on $S_{1} S_{2}$, S_{3} is constructed so that its contents are all possible 2-set : one element coming
from S_{1} and another from S_{2} and all possible 2-sets : both elements coming from S_{3}. Representing all possible 2 -sets of X, the treatments of a design and constructing the blocks for all possible partitions of X , a series of design given in the below theorem is obtained.

Theorem 1. A series of two-associate class triangular PBIBD's with the following parameters always exists.

$$
\begin{aligned}
& v=\binom{n}{2} \quad b=\binom{n}{s_{1}}\binom{n-s_{1}}{s_{2}} \quad k=s_{1} s_{2}+\alpha\binom{s_{3}}{2} \\
& r=2\binom{n-2}{s_{1}-1}\binom{n-s_{1}-1}{s_{2}-1}+\alpha\binom{n-2}{s_{1}}\binom{n-s_{1}-2}{s_{2}} \\
& \lambda_{1}=\delta_{1}\binom{n-3}{s_{1}-1}\binom{n-s_{1}-2}{s_{2}-2}+\delta_{2}\binom{n-3}{s_{1}-2}\binom{n-s_{2}-1}{s_{2}-1} \\
& \because+\delta_{3}\binom{n-3}{s_{1}}\binom{n-s_{1}-3}{s_{2}} \\
& \begin{aligned}
& \lambda_{2}=4 \delta_{4}\binom{n-4}{s_{1}-2}\binom{n-s_{1}-2}{s_{2}-2}+\delta_{5}\binom{n-4}{s_{1}}\binom{n-s_{1}-4}{s_{2}} \\
&+4 \alpha\binom{n-4}{s_{1}-1}\binom{n-s_{1}-3}{s_{2}-1}
\end{aligned}
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha=0, \text { if } s_{3}<2, \delta_{1}=0, \text { if } s_{2}<2 ; \quad \delta_{2}=0, \text { if } s_{1}<2 ; \\
& =1 \text {, otherwise } \quad=1 \text { otherwise } \quad=1 \text {, otherwise, } \\
& \delta_{3}=0 \text {, if } s_{3}<3 ; \delta_{4}=0 \text {, if one of } s_{1} \quad \delta_{5}=0 \text {, if } s_{3}<4 \text {; } \\
& =1 \text {, otherwise } \quad \text { and } s_{2}<2 ; \quad=1 \text {, otherwise } \\
& =1 \text {, otherwise }
\end{aligned}
$$

Proof: It can be easily seen that v is equal to $\binom{\mathrm{n}}{2}$. For the construction of block, there are $\binom{n}{s_{1}}\binom{n-s_{1}}{s_{2}}$ distinct partitions of X, which gives the number of blocks. The block size is equal to the sum of the number of 2 -sets : one element coming from S_{1} and another from S_{2} and number of 2-sets : both elements coming from S_{3}. That is $\mathrm{s}_{1} \mathrm{~s}_{2+}\binom{\mathrm{s}_{3}}{2}$.

A treatment $\left\{\theta_{1}, \theta_{2}\right\}$ occurs in a block, if the partition of X makes that (i) $\theta_{1}\left(\theta_{2}\right)$ and $\theta_{2}\left(\theta_{1}\right)$ belong to S_{2} or (ii) θ_{1} and θ_{2} belong to S_{3}. The number of such partitions is

$$
2\binom{n-2}{s_{1}-1}\binom{n-s_{1}-1}{s_{2}-1}\binom{n-s_{1}-s_{2}}{s_{3}}+\binom{n-2}{s_{1}}\binom{n-s_{1}-2}{s_{2}}\binom{n-s_{1}-s_{2}-2}{s_{3}-2}
$$

which is the replication number of the design.
Any two first associates, $\left\{\theta_{1}, \theta_{2}\right\}$ and $\left\{\theta_{1}, \theta_{3}\right\}$ appear together in a block when its partition of X is such that (i) θ_{1} (both θ_{2} and θ_{3}) belong to S_{1} and both θ_{2} and $\theta_{3}\left(\theta_{1}\right)$ belong to S_{2} or (ii) $\theta_{1}, \theta_{2}, \theta_{3}$ belong to S_{3}.

Any two second associates, $\left\{\theta_{1}, \theta_{2}\right\}$ and $\left\{\psi_{1}, \psi_{2}\right\}$ occur together in a block if X is partitioned such that
(i) $\left(\theta_{1}, \psi_{1}\right),\left(\theta_{2}, \psi_{2}\right)$ belong to S_{1}, S_{2} respectively, or
(ii) $\left(\theta_{1}, \psi_{2}\right),\left(\theta_{2}, \psi_{1}\right)$ belong to S_{1}, S_{2} respectively, or
(iii) $\left(\theta_{2}, \Psi_{1}\right),\left(\theta_{1}, \Psi_{2}\right)$ belong to S_{1}, S_{2} respectively, or
(iv) $\left(\theta_{2}, \Psi_{2}\right),\left(\theta_{1}, \psi_{1}\right)$ belong to S_{1}, S_{2} respectively, or
(v) $\theta_{1}, \theta_{2}, \psi_{1}, \psi_{2}$ belong to S_{3}, or
(vi). $\theta_{1}\left(\theta_{2}\right), \theta_{2}\left(\theta_{1}\right)$, both Ψ_{1} and ψ_{2} belong to S_{1}, S_{2}, S_{3} respectively, or
(vii) $\psi_{1}\left(\Psi_{2}\right), \psi_{2}\left(\Psi_{1}\right)$, both θ_{1} and θ_{2} belong to S_{1}, S_{2}, S_{3} respectively.

Counting straight forward the partitions of X, the value of λ_{1} and λ_{2} are obtained.

Under the condition $s_{1}=s_{2}=S$ (say), each block in the above construction gets repeated twice. Keeping only one copy of each block, we get :

Corollary 1. A series of two-associate class triangular PBIBD with the following parameters always exists.

$$
\begin{aligned}
& v=\binom{n}{2}, b=\frac{1}{2}\binom{n}{s}\binom{n-s}{s}, k=s^{2}+\alpha\binom{n-2 s}{2} \\
& r=\binom{n-2}{s-1}\binom{n-s-1}{s-1}+\frac{1}{2} \alpha\binom{n-2}{s}\binom{n-s-2}{s} \\
& \lambda_{1}=\delta_{1}\binom{n-3}{s-1}+\frac{1}{2} \delta_{2}\binom{n-3}{s}\binom{n-s-3}{s}
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{2}=2 \delta_{1}\binom{n-4}{s-2}\binom{n-s-2}{s-2}+\frac{1}{2} \delta_{3}\binom{n-4}{s} & \binom{n-s-4}{s} \\
& +2 \alpha\binom{n-4}{s-1}\binom{n-s-3}{s-1}
\end{aligned}
$$

where

$$
\begin{aligned}
\delta_{1} & =0, \text { if } \mathrm{s}<2 ; & \delta_{2} & =0, \text { if } \mathrm{n}<3+2 \mathrm{~s} \\
& =1, \text { otherwise, } & & =1, \text { otherwise } \\
\delta_{3} & =0, \text { if } \mathrm{n}<2(\mathrm{~s}+2) ; & \alpha & =0, \text { if } \mathrm{n}<2(\mathrm{~s}+1) \\
& =1, \text { otherwise, } & & =1, \text { otherwise }
\end{aligned}
$$

Two series of 2 -associate triangular PBIBD are given as example of Theorem 1 and Corollary 1 respectively.

Example 1. Letting $\mathrm{s}_{1}=2, \mathrm{~s}_{2}=1, \mathrm{~s}_{3}=2$, the parameters of the design are $\mathrm{v}=10, \mathrm{~b}=30, \mathrm{k}=3, \mathrm{r}=9, \lambda_{1}=1, \lambda_{2}=4$.

Example 2. For $s=2, \mathrm{n}=6$, we get a series of 2 -associate triangular PBIBD with the parameters $v=15, b=45, \mathrm{k}=5, \mathrm{r}=15$, $\lambda_{1}=3, \lambda_{2}=6$.

Remark 1. The possible different relations on n and s, under which PBIBD given in Corollary 1, becomes a BIBD are as follows :

If (i) $s \geq 2, \mathrm{n} \geq 2(\mathrm{~s}+2)$, when

$$
(\mathrm{n}-3)(\mathrm{s}-1)!\mathrm{q}!=(\mathrm{n}-\mathrm{s}-2)!\left[2 \mathrm{~s}(\mathrm{~s}-1)^{2}+\mathrm{q}(\mathrm{q}-1)(4 \mathrm{~s}-\mathrm{n}+2)\right]
$$

(ii) $\mathrm{s} \geq 2, \mathrm{n}<2(\mathrm{~s}+2)$,
when $(n-3)(s-2)!q!=2(n-s-2)!(s-1)$
(iii) $\mathrm{s} \geq 2, \mathrm{n}=2(\mathrm{~s}+2)$,
when $(n-3)(s-1)!q!=2(n-s-2)-\left[(s-1)^{2}+q(q-1)\right]$
(iv) $s=1, n \geq 2(s+2)$, the BIBD is with parameters $v=15=b$, $\mathrm{k}=7=\mathrm{r}, \lambda=3$
(v) $\mathrm{s} \geq 2, \mathrm{n}=2 \mathrm{~s}+3$, when $2 s(n-3) s!q!=(n-s-2)!\left[4 s^{2}\left\{(s-1)^{2}+q(q-1)\right\}\right.$

$$
-(\mathrm{n}-3) \mathrm{q}(\mathrm{q}-1)(\mathrm{q}-2)]
$$

where $q=n-2 s$

ACKNOWLEDGEMENT

The author is thankful to the referee for his helpful comments.

REFERENCES

[1] John, P.W.M., 1966. An extension of the triangular association scheme to three associate classes. J. Roy. Statist. Soc. B, 28, 361-365.
[2] Saha, G.M.; 1973. On construction of T_{m}-type PBIB designs. Ann. Inst. Stat. Math., 25, 605-616.
[3] Sinha, K., 1977. On the construction of PBIB design I. J. Statist. Plan. and Inf., 1, 103-107.
[4] Sinha, K., 1981. On the construction of PBIB designs II. Math. Oper. Statist., 12(4), 503-508.
[5] Sinha, K., 1983. A BIBD arising from a construction for PBIBD. ARS Combinatoria, 18, 217-219.
[6] Sinha, K. and Sinha, M.K., 1991. A series of BIB designs. ARS Combinatoria, 32.

